DETERMINATION OF THE $\pi\pi$ SCATTERING PHASE SHIFTS UP TO 1.3 GeV C.M. ENERGY

G. WOLF

Deutsches Elektronen Synchrotron (DESY), Hamburg

Received 18 September 1965

There is now considerable information available on various aspects of the elastic $\pi\pi$ interaction such as angular distributions, cross sections and S-wave contributions at low energies. Most of this information comes from the application of the one pion exchange model [1,2] to the experimental results on single and double pion production in πp collisions such as $\pi^- p \to \pi^- \pi^0 p$ or $\pi^- p \rightarrow N_{33}^{*++} \pi^- \pi^- [3-13]$. When the formfactor and off-shell correction functions of Ferrari and Selleri are used [14], the one pion exchange model yields consistent results on the $\pi\pi$ interaction from different reactions and with different momenta of the incoming pion [6-11, 13]. This gives confidence in those data on $\pi\pi$ scattering which have been obtained in this way.

In the study reported here we tried to combine all experimental data on the elestic $\pi\pi$ interaction and to analyse them in terms of the $\pi\pi$ scattering phase shifts. The main results of the analysis are: 1. A set of phase shifts is obtained which in a consistent way fit the existing data on $\pi\pi$ scattering. 2. The width of the ρ meson turned out to be 170 MeV, a value which has to be compared with the commonly accepted one of 110 MeV. 3. The existence of a T=0, J=0 $\pi\pi$ resonance is confirmed. A mass of 0.74 GeV and a full width at half maximum of 90 MeV were found for this resonance. A more detailed description of the analysis will appear elsewhere [15]. The values of the $\pi\pi$ phase shifts from threshold up to a c.m. energy of $\omega = 1.3$ GeV are summarized in fig. 1.

With the help of the one pion exchange model, using the corrections proposed by Ferrari and Selleri, $\sigma_{\pi\pi}$, the total cross sections for elastic $\pi^-\pi^0$, $\pi^+\pi^-$ and $\pi^\pm\pi^\pm$ scattering have been determined from the reactions $\pi^-p \to \pi^-\pi^0p$ (1.59 [6], 2.75 [7], 4.0 [10]), $\pi^-p \to \pi^+\pi^-n$ (1.59 [6], 2.75 [7], 4.0 [9-11, 16]), $\pi^+p \to \pi^+\pi^+n$ (4.0 [13]) and $\pi^-p \to N_{33}^{*+}\pi^-\pi^-$ (4.0 †). The figures in brackets give the laboratory momenta of the incident pion at which the reactions have been studied.

Fig. 1. $\pi\pi$ phase shifts $\mathbf{\delta}_{~J}^{~T}$ as a function of the $\pi\pi$ c.m. energy ω .

In ref. $8\ \sigma\ \pi^-\pi^-$ was determined without the use of off-shell corrections for the $\pi\pi$ vertex. The corresponding influence on the values of $\sigma_{\pi^-\pi^-}$ was estimated and the corrected values were used in this analysis.

Further information on $\pi\pi$ scattering comes from the measurements of a) the $\pi\pi$ angular distribution $W(\cos\theta)$, where θ is the angle between the incoming pion and the outgoing pion of the same charge in the $\pi\pi$ rest system; b) the asymmetry parameter R=(Forward-Backward)/(Forward+Backward). Apart from the above cited experiments there are data available from the reactions $\pi^-p \to \pi^-\pi^0p$ (3.0 [17], 3.3 [18]), $\pi^-p \to \pi^+\pi^-n$ (3.0 [17], 3.3 [18], 6.0 [19]), $\pi^+n \to \pi^+\pi^-p$ (6.0 [20]) and $\pi^-p \to N_{33}^{*++}\pi^-\pi^-$ (2.75 [8]).

According to Selleri [14] the $\pi\pi$ angular distribution is altered if one of the pions is off the mass shell and partial waves of different angular momentum states contribute. Therefore the $\pi\pi$ angular distribution measured in reactions such as $\pi N \to \pi\pi N$ may differ from the angular distribution for on-shell $\pi\pi$ scattering. The corrections for R are typically of the order of 10-30% for momentum transfers squared of $-t=10~\mu^2$ (μ pion mass). They have been taken into account in this analysis.

The $\pi\pi$ phase shifts δ^T_J were determined by first analysing $\pi^\pm\pi^\pm$ scattering which involves only the T=2 isospin amplitude. The $\pi^\pm\pi^\pm$ cross section and the angular distribution could be well described assuming S and D waves only. The relative sign of δ^0_0 and δ^0_2 turned out to be positive and the negative value of $R_{\pi^+\pi^0}$, the asymmetry parameter for $\pi^-\pi^0$ scattering, determined the negative sign of δ^0_0 .

Knowing the T=2 phase shifts, the experimental results on $\pi^-\pi^0$ scattering were used to obtain the T=1 phase shifts. The phase shift δ_1^1 is dominated by the ρ meson. The fit of the ρ width to the behaviour of $R_{\pi^-\pi^0}$ and of $\sigma_{\pi^-\pi^0}$ gave a full width at half maximum of 170 MeV. The phase shift δ_3^1 was found to be small.

The T=0 phase shifts were then fitted using the $\pi^+\pi^-$ scattering data. At very low $\pi\pi$ masses the T=0, S-wave $\pi\pi$ interaction was measured by studying the reaction $p+d\to {}^3He+2\pi$ [21]. At large $\pi\pi$ masses ($\omega \gtrsim 1$ GeV) there is a strong D-wave contribution which mainly comes from the f meson. We therefore calculated δ_2^0 using a resonant phase-shift formula [22]. Knowing δ_2^0 one can now try to determine δ_0^0 for $\omega > 0.5$ GeV. Whereas in this region $\sigma_{\pi}+_{\pi}-$ is insensitive to the value of δ_0^0 , $R_{\pi}+_{\pi}-$ depends critically on δ_0^0 . Fitting δ_0^0 to $R_{\pi}+_{\pi}-$ we found that the large asymmetry ($R_{\pi}+_{\pi}-\approx 0.4-0.6$), observed from 0.6 GeV up to 0.9 GeV, can only be explained by assuming the existence of a resonance in the T=0, J=0 state with a mass of about that of the ρ meson. Best agreement was found with a mass of 0.74 GeV and

Fig. 2. Energy dependence of the asymmetry parameter R. The data were taken from the compilation given in ref. 7 and from ref. 20. The curves shown were calculated from the δ^T_J for on-shell $\pi\pi$ scattering (solid line) and for the scattering of a real pion on a pion with a mass squared of -15 μ^2 (dashed line). a) $\pi^-\pi^0$ system, b) $\pi^+\pi^-$ system.

a width of 90 MeV. This result has been suggested by several authors and has been found in similar investigations [23,24].

Fig. 1 gives the behaviour of the phase shifts. In figs. 2a, b, $R_{\pi^{-}\pi^{0}}$ and $R_{\pi^{+}\pi^{-}}$, calculated from the phase shifts are compared with the measurements. The values of R were calculated a) for on-shell π^{π} scattering, b) for momentum transfers squared to the π^{π} system $-t=15~\mu^{2}$ [25]. In figs. 3a-c, a comparison is made between the

Fig. 3. Elastic $\pi\pi$ scattering cross section as a function of the $\pi\pi$ c.m. energy ω . a) $\pi^-\pi^0$ scattering. The data come from $\pi^-p \to \pi^-\pi^0p$ (1.59, 2.75 [7]). b) $\pi^+\pi^-$ scattering. The data come from $\pi^-p \to \pi^+\pi^-n$ (e 1.59 and 2.75 [7], o 4.0 [16]). c) $\pi^{\pm}\pi^{\pm}$ scattering. The data come from $\pi^{\dagger}p \to \pi^{\dagger}\pi^{\dagger}n$ (∇ 4.0 [13]) and from $\pi p \to N_{33}^{*++}\pi^{-}\pi^{-}$ (∇ 4.0 †).

measured and the calculated $\pi\pi$ cross sections. The figures show that the experimental results are well described by the fitted values of the phase shifts.

I want to thank Dr. E. Lohrmann for valuable discussions and for reading the manuscript.

References

- 1. C.Goebel, Phys. Rev. Letters 1 (1958) 337.
- 2. G.F. Chew and F.E. Low, Phys. Rev. 113 (1959) 1640.
- 3. I.A. Anderson, V.X. Bang, P.G. Burke, D.D. Carmony and N.Schmitz, Rev. Mod. Phys. 33 (1961) 431.
- 4. A.R. Erwin, R. March, W.D. Walker and E. West. Phys. Rev. Letters 6 (1961) 628.
- 5. E. Pickup, D. K. Robinson and E.O. Salant, Phys. Rev. Letters 7 (1961) 192.
- 6. Saclay-Orsay-Bari-Bologna-collaboration, Nuovo Cimento 25 (1962) 365.
- 7. Saclay-Orsay-Bari-Bologna-collaboration, Nuovo Cimento 35 (1965) 713.
- Saclay-Orsay-Bari-Bologna-collaboration, Nuovo
- Cimento 35 (1965) 1. 9. Aachen-Birmingham-Bonn-Hamburg-London-Mün-
- chen-collaboration, Physics Letters 5 (1963) 153. 10. Aachen-Birmingham-Bonn-Hamburg-London-München-collaboration, Nuovo Cimento 31 (1964) 729.
- 11. Aachen-Birmingham-Bonn-Hamburg-London-München-collaboration, Nuovo Cimento 31 (1964) 485.
- 12. N. Schmitz, Nuovo Cimento 31 (1964) 255,
- 13. Aachen-Berlin-Birmingham-Bonn-Hamburg-London-München-collaboration, Phys. Rev. 138 (1965) B897.
- 14. E. Ferrari and F. Selleri, Phys. Rev. Letters 7 (1961) 387; and F. Selleri, Physics Letters 3 (1962) 76.
- 15. G. Wolf, to be submitted to Z. Physik.16. G. Wolf, University of Hamburg, thesis (1964).
- 17. V. Hagopian and W. Selove, Phys. Rev. Letters 10 (1963) 533.
- 18. Z.G.T.Guiragossian, UCRL 10731 (1963).
- 19. I.J. Veillet, J. Hennessy, H. Bingham, M. Bloch, D. Drijard and P. Negri, Phys. Rev. Letters 10 (1963) 29.
- 20. CERN-Ecole Polytechnique-collaboration, Physics Letters 17 (1965) 354.
- 21. N.E. Booth and A. Abashian, Phys. Rev. 132 (1964)
- 22. J.D. Jackson, Nuovo Cimento 34 (1964) 1644.
- 23. V. Hagopian and W. Selove, Phys. Rev. Letters 10 (1963) 533; and
 - J.P. Baton and J. Reigner, Nuovo Cimento, to be published.
- 24. M.M. Islam and R. Pinon, Phys. Rev. Letters 12 (1964) 310; S.H. Patil, Phys. Rev. Letters 13 (1964) 261; L. Durand and Y. T. Chiu, Phys. Rev. Letters 14 (1965) 329,
- 25. H.P.Durr and H.Pilkuhn, CERN preprint TH 581 (1965), formula (36) was used with $1/R^2 = 10 \mu^2$.

[†] See footnote on page 328.